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1. Introduction

This 1is the final report of the CCS/CMC Mathematics Clinic.
Our project was for the Ground Data Systems section of the
Intelligence Analysis Group at the Jet Propulsion Laboratory.
Qur project concerned the gathering of intelligence information
through radio direction finding and fixing. We focused on the
way radio sensors may be used to locate radio emitters such as
radio transmitters or radar sets, and on errors in the readings
returned by such sensors. The goal was to use this information,
taking into account various errors, 80 that a region can be
mapped around an estimate of the emitter location such that the
true location of the emitter lies in this region with a specified
probability.
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s . We examined two models of a simple intelligence gathering
scenario, both of which were restricted to the two-sensor case.
The first was based on the classical assumptions of df fixing
originally proposed by R.G. Stansfield. The second was a model
constructed by the Clinic, which was created by relaxing one of
Stansfield's simplifying assumptions. Our analysis of these
models rovealed that this particular assumption of Stansfield's
introduces an additional error which is eliminated in the model
constructed by the Clinic. The goal of this analysis was to
critique the methods currently used to find confidence regions
about location estimates.

In this report, we first discuss Stansfield's model as
applied to the two-sensor case and its implications for the
construction of confidence regions. Second, we describe oaur
modification of the classical model, and certain subsequent
analytical complexities. Third, we present the methods that we
employed to mitigate the effects of these complexities. Fourth,
we compare the results of our model with those of the Stansfield
model. We then examine other types of errors originating from
the radio sensors and their placement, and show in particular
that a two-dimensional error in the location of a sensor s
equivalent to a one-dimensional angular error -- a special case
of our general model. In addition we will discuss several
related topics, including a one-sensor model, systematic error,

and the use of a digitizer or other computer analysis aids.
rg Finally, we discuss areas for future research and state our final
};{‘ conclusions.
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JI. Stansfield's Model

The classical df fixing model was studied by R.G. Stansfield
during World War II. Here we use a simple case of the general
model with two radio sensors and a single emitter. In Figure 1
the sensors are denoted by S1 and S2, and the emitter is labeled
E. Each sensor detects the radio signals broadcast by the
emitter and returns an estimate of the line of bearing from the
sensor to the emitter. The angles the true lines of bearing make
with the baseline are denoted by Mu(Alpha) and Mu(Beta)
respectively. However, 1t is improbable that the sensors would
ever return exactly these lines of bearing, due to a variety of
factors such as operator error, equipment error, terrain effects
and atmospheric conditions. We will group these effects under
the heading "measurement error."

The question arises as to how this measurement error is
quantified. Clearly, these errors will be in degrees since the
readings returned by the sensors are themselves in degrees.
However, in order to simplify the analysis, Stansfield made a
number of impertant assumptions, which are enumerated below.
Assumption (3) is particularly relevant at this point.

(1) The earth 1is flat near the true position of the
transmitter.

(2) The bearing lines are straight.

(3) An error of observation displaces the bearing 1line
parallel to itself.

(4) PErrors in separate bearings contributing to a fix are
independant.

(5) The errors are normally distributed about a mean of
zero, and the variances are known.

The third assumption i{s significant, and is detailed in
Figure 2. Suppose that sensor 2 has returned the true line of
bearing from itself to the emitter, while sensor 1 is in error.
That is, sensor 1 returns the angle Alpha, and thus the line of
bearing in Figure 2 labeled L2. Examination of these readings
would place the estimate of the emitter's location at E'. Mow,
this 1is where Assumpticn 3 makes itself felt. Rather than
measuring the error in sensor 1's reading by the difference
Mu(Alpha) - Alpha, Stansfield draws a new line through point E'
parallel to the true line of bearing from sensor 1 to the
emitter. He measures the error, D1, 1in terms of the distance



N

gﬁq . between the true line of bearing and its parallel displacement at
g E'. Put another way, the error D1 in sensor 1's reading is the
P2 " J;ggg perpendicular distance from E' to the true 1line of bearing.
MY e Errors in the reading from sensor 2 are dealt with similarly.

R The essence of Stansfield's simplifying assumption is this
K -- the error in a sensor reading may be measured by this parallel
‘g~1 displacement (or perpendicular distance) without regard for the
il corresponding angular error. Further, he makes the following
e assumption about the nature of the error: the distance between
. the true line of bearing and the parallel displaced line follows
il the normal probability law with a mean of zero and some known
ﬁ@- standard deviation. Since this assumption is assumed to hold for
f%u both sensors, the estimate of the location will follow the
LY Y bivariate normal probability law. The density funotion for this
‘vl ~ distribution is shown in Equation 1.

;;ﬂ {

i - 2 f~u,\2
0 - 1 1{78a)c 1 [FTMy
K ' (1) * (z,f) = s pr[— —( -5

2::3& i e,8 ZM.G‘ 2 % 2 Sy
A

§§f _ { This is a desirable result as the bivariate normal is a well-
%pu . understood probability law with many useful properties., Thus,
Y the above simplifying assumption has ramifications for the
ﬁ? | estimate of the emitter location, which includes both the point
N i, estimate and the confidence region.

We must digress momentarily to define these terms. The

{ point estimate is simply the most likely position of the emitter

given the sensor readings. Due to the error in the sensor

readings, it is unlikely that the point estimate will exactly

equal the true location of the emitter. ‘This is why confidence

' regions are constructed. The region eatimate, or oonfidence

region, measures how far the point estimate is likely to be from

/ the true position of the emitter. In Figure 3 there is a 95%

confidence ellipse of the type that one would calculate using the

Stansfield model. As before, E represents the emitter, and E'

the point estimate of the emitter's location. The mesaning of

this ellipse is that if one estimates the location of the emitter

100 times, and construots a confidence ellipse each time, one

would expect about 95 of the confidence eillipses constructed to
contain point E.

While the confidence region in this example is an ellipse,
confidence regions can take many different shapes. In Figure 3,
both the ellipse and the square are 95% oconfidence regions.
Since the ellipse captures the same probability in a smller
area, it is a better estimate of the error in our point estimate.
Ry In fact, this is the definition of an optimal confidence region:
e it 1is that region which captures the desired level of confidence
in the smallest area.

3 §§§§ Because of the assumption of parallel error displacement,
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the optimal confidence region in Stansfield's model is an ellipse
having the formula shown in Equation 2.

Y o ] 2,a
‘01 L] ‘

A This is the ordinary confidence region associated with the 1
! bivariate normal distribution.
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III. Modifications: The Clinic's Model

As is the case with any - .eoretical research, it i3
interesting to drop assumptions and determine whether the
conclusions are significantly altered. In studying this location
problem, the Clinic retained the assumptions enumerated above
with the exception of .Assumption (3) =-- the parallel error
displacement assumption. In its place we use the more natural
assumption of angular error displacemnt. That is, we measure the
error in a sensor reading by the number of degrees that it
deviates. from the true 1line of bhearing -- the difference
Mu(Alpha) - Alpha. -Further, we assume that this error is

. normally distributed with a mean of zero and some known standard
. deviation. Figure 4 shows ar examp.e of this model. As in
i Figure 2, the true lines of bearing have angles Mu(Alpha) and

Mu(Beta) with the baseline. Sensors ' and 2 return the angles
] Alpha an¢ Beta respectively, yilelding the estimated emitter
i location E'. The measurement errors in these readings are

Mu(Alpha) - Alpha and Mu(Beta) - Beta.

.‘}g Because we have aansumed that the error is angular and not a

é%&? parallel displacement distance, it can easily be shown that the
' distribution of the emitter location estimate about the true
| location uf the emitter is no longer the bivariate normal, The
1 nature of the distribution is shown by the following analysis.

l Since we have assumed that these errors are normally
distributed about a mean of zero, we know that 95% of the
readings will fall within + 2 standard deviations of the true
line of bearing. In all of our examples we have arbitrarily
chosen a standard deviation of 1 degrce. Thus, if Mu(Alpha) = 80
degrees and Mu(Beta) = 110 degrees, then we would expect 95% of
the readings for sensors 1 and 2 to fall between 78 and 82
degrees, and 108 and 112 degrees respectively. Similarly, 99% of
the readings should fall within 3 standard deviations -- between
77 and 83 for sensor 1, and 107 and 113 for sensor 2. The
bearing lines associated with these extreme values give us the
large qQuadrilateral in Figure 5. Further, we know that this
quadrilateral contains about 98% (.99 x .99) of the emitter
estimates. To obtain a rough estimate for the probability
density we constructed lines of beuring corresponding to errors
of + 0,5, +1.0, +1.5, + 2.0, +2.5, and + 3.0. These rays
divide the large quaurilateral into 25 small quadrilaterals, as
shown in /igure 5.

As the next step, we found the probabllity of a location

ﬁqsk estimate falling into each of these small quadrilaterals.
#}\y Because of symmetry in the angular error distribution (the
5
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normal), corresponding quadrilaterals will have equal
probabilities. For instance, the uppermost and bottommost
quadrilaterals in Figure 5, both labeled Y, have the same

probability. It is clear, however, that their areas are very

different. We termed this array of quadrilaterals with assigned A
probabilities a probability grid. , -

These quadrilaterals marked Y have the same probabllity,
0.003672, but their areas are 3410.3 and 1587.7 respectively.
Thus, the average probability density in these regions are
0.06000108 and 0.00000232 =-- which differ by a factor of 2.
Clearly the distribution of the location estimates about the true
location is skewed.

This shows that even when the angular error for each line of
bearing is normally distributed., the points of intersection of
these 1lines of Dbearing do not have a bivariate normal
distribution. Finer grids of more than 3600 small’ quadrilaterals
were produced both graphically and analytically by computer,
Both methods showed evidence that the points were not distributed
according to the bivariate normal probability law.  Because the
density function is not the bivariste normal, there is no reascn
to bglieve that the best confidence regions are elliptically
shaped. b
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IV. Methods to Determine Functional Form

The Clinic wused the probability g'id derived above to
explore the shape of the density function in a number of ways,
including strips of probability and bands of ecui-density.

As was stated in the previsus section, Iif the bivariate
normal function were used, then tiie large quadrilateral would be
symmetrically shaped and any two corresponding quadrilaterals,
such as those in Figure 5, would have the same average
probability density. If bands of equi-probability were graphed
S0 that only those points satisfying a given Inequality were
plotted, one would expect to see the points avenly distributed
above and below the true emitter location. When angular
displacement is used, it is clear that the points are not equally
distributed about the true emitter location. If fact, if regions
of relatively high density are graphed, then the majcrity of the
plotted points will lie below the intersection of the true lines
of bearing. Conversely, if low density regions are graphed, then
the majority of the points will lie above the intersection of the
2 true lines of bearing. This tells us that regions above the true
\+¥ 4 location have lower density than those below.

L —— P ————

-

Examining tle "strips" shown in Figure 6 yielded similar
results. These strips were constructed sc as to divide the
distribution into a number of bands of equal width both above and
below the true locaticn of the emitter. The probability of any
reading falling into each of these strips was calculated using a
probability grid. If the distribution were the bivariate normal,
we would expect corresponding strips above and below the true
emitter location to have about the same probebility. Table 1,
however, shows a case in which the skewness of the distribution
is quite clear.

Having tried other techniques to determine the shape of the
probability function and its corresponding confidence regions
without much success, the Clinic decided to investigate
transforming the probability funtion from the angular to the
rectangular coordinate  systen. This is equivalent ¢to
transforming the ©bivariate normal (Equation #). The
transformation for the X and Y coordinates are given below:

3) X = D tan § Y « D tan « tan 8
tan 4 - tan « tan 8 - tan «

--',.J'.
[t
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or inversely,

(4)

To obtain the Jjoint density of X and Y we use the

= tan”!(¥)

transformation formila:

(%)

where |Ji

&)

8 = tnn-1(§§5)

-y
£y gV = 4..‘(tan-7—. tan 35} 101

Solving, this gives us

{(7)

is presented below:

4=}

§

X,Y

follovwing

is the determinant of the following matrix:
-y X=-D
o av| _ XZevZ X2ev<
Y] =Y_ X=D
ox oy (x-DY24¥Z  (X-D)Z4y2
N A
(x2+v2) [(x-p)2+v?]
Using these transformations and the bivariate normal it is
possible to rewrite the equation in terms of X and Y. The result
(X,Y) ____-___JLIL______.l
ch‘c‘ (XRWZ) [ (X—D) 2+Y2]
Y.)2 Y 2
1y -1°0 -1 Y -1 O
¥ ~tan "= tan = ~tan f;:ﬁ
=] «+
¢ ]
o 4 8

L0 Ok

tan
NP "'%‘

where (XD,YO) corresponds to (u.,u‘).
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However, this density function is not easy to analyze either
L analytically or numerically, Therefore, the Clinic transformed
J%ﬁ@ the optimal confidence region from the angular coordinate system,
" using the same relationships for X and Y. ‘This yielded the
following inequality:

Ya\2 Y 2
~1Y .. =12 ut Y S W
YR tan Ty ctan Tl [Een wep ~ten %,-D .
n - + | e £ x2
« : .‘ 2;..

. Wnen the boundary points of this inequality are graphed, the
. ; region is nearly, but not quite ellip;ioal.

. ‘ Since it was not possible to tell visually how significantly

i these regions differed from ellipses, the Clinic performed a
least asquares analysis on the regions. First, we genurated 50
boundary points from the original angular confidence inequality.

r ‘These points were then transformed into the XY coordinate system
using the transformation foruulas. These are the data that were
used in the regression.

The general form of a quadratic equation in the XY systenm is

3 given below:

3.\ ’

o . - .

& (18) A'X + B'XY + C'V2 ¢ D'X ¢+ E'Y + B/ = g

2 i

é' ¢ Manipulating this equation yields a form which can be estimated

Q ; by the techniques of ordinary least squares.

o

“

o (11) X2 m ~BXY = CVZ = DX ~ EY = F

1y where B = B'/A’, C = C’/A’, D = D'/A’, E = E’/A’

% and F = F’/A’.,

I

) While this estimated ellipse is only an approximation to the

X transformed region, it i{s quite close. For example, when we
estimated a 95% confidence ellipse in the angular coordinate

: system for the Mu(Alpha)s=B80 degree / Mu(Beta)s110 degree oene,

y the estimated ellipse using regression oontained 95.011%

¢ of the probability., Such & small deviation from the desired 95%

" can be accounted for by nunerical errors inhevent in the method

o 4§§§ amployed, as well as the grid size used. Due to the closcness of

QFA.'.
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the approximation, and the difficulties in analyzing the
- transformed regions, it is these ellipses, determined by linear
L0 regression which we will use to contrast with the Stansfield
&ﬁ‘;’ ellipses.
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V. Comparison of the Confidence Regiorn Methods

We have now examined two distinot methods of constructing
confidence regions: Stanafield's and the Clinle's. In this
section we shall cvompare the results obtained from both methods
when they are applied to the Clinic's version of the two-sensor
model. The nresults show that while the Clinic's method is not
necessarily the optimal method of constructing confidence regions
given out model, it is a better method than Stansfield's. That
is, the Clinic's confidence regions capture a given amount of
probability in a smaller area than do Stansfield's.

The first method is that formulated by Stansafield, based on
his parallel displacement assumption. Since this assumption
allows the bivariate normal distribution to be used, ¢the optimal
confidenve region is the ordinary ellipse based on this
distribution. However, if the parallel displacement assumption
i{s dropped, and our mcdel used in its place, the Stansfield
confidence ellipse is no longer optimal. Instead, we propose the
"transformed" region which was derived in the previous section by
transforming the optimal ellipse in angular coordinates into a
region in rectangular coordinates.

As we have discussed, this transformed region is almost, but
not quite, elliptical. In the numerical examples presented here
we have used our least-squares approximation to the transformed
region.

At this point we must digress momentarily to oonsider the
relationship between confidence regions and probability regions,
which are sometimes known as tolerance regions. An example of a
probability region is one of the quadrilaterals in our
probability grid. Based on a certain probability distribution,
it contains a certain amount of probability. A 95% probability
region is simply a region which oontains 958 of the
distribution's probadbility. An optimal probability region we
define as that region which contains the desired probability with
the smallest area. By contrast, the optimal 95% oconfidence
region is that region with the smallest area which will catch the
true Jocation of the emitter 95 times cut of one hundred.

The relaticnship between these is that the optimal way of
constructing a probability region about the true location of the
emitter is also the optimal way of constructing a confidence
region about an estimate of the emitter's location. This assumes
that the ©probablility region is based on the sampling
distribution, but this is irrelevant since the sampling and the
base distributjions are the same when only one observation is




O

ﬁ% , taken {rrelevant., The result is that instead of oonstructing

S confidence regions we may construct probability regions using the

3& o same methods, and arrive at valid conclusions. All of the

Y - analysis in this section was done using probability regions.

o In particular we shall focus on the case where the true

N lines of bearing from Sensors 1 and 2 are 80 degrees and 110

Q% degrees respectively. Further, the sensors are 1000 meters
N apart, and the error for both sensors has a standard deviation of

& 1 degree.

Figure 7 oontains a graph of the 50%, 75% and 95%

= probability ellipses caloulated using the olassical method, and
o Table 2 lists their area and the probability contained in them,
"y Note that they are concentric and centered at the true emitter
S location. Notice further that they do not contain the oorrect

' amount of probadbility. In fact, they tend to contain about 25%

& X less probability than they ought ¢to. This is Dbecause
gk Stansfield's ellipses are inappropriate when the angular error is

normally distributed,

The graphs of the 50%, 75% and 95% regions calculated using
the Clinic's method are shown in figure 8, and their areas and

§w { probabilities are listed in Table 3. Due to the ske¢ 233 of the
Jz density function, these regions are not centered : . the true
,E emitter location. Rather, the higher the desired level of
& ' confidence the further the region is positioned from the
';@ e baseline. These regions, which are only approximations, contain
%ﬁﬁf close to the correct probability. In faot, the differences are
o small enough to be indistinguishable from numerical errors
'3? f inherent in our methods of analysis. The use of a probability
o { grid, for example, guarantees that our program will return
‘Sa values good only to a few decimal places.
o i Also included in Tables 2 and 3 are figures for the 70

degree/170 degree and 45 degree/135 degres cases. The related
ellipses are graphed in Figures 9, 10, 11, and 12, Please note
_ that the scale of the drawing varies from figure to figure, 80
‘ direct comparisons of size are difficult. The "area" values in
Tables 2 and 3 should aid comparison. These results strongly
indicate that using the Stansfield model brings unnecessary error
into the process of construction confidence regions.
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3 V. Sensor Location Error

%
g“ Thus far, we have discussed the angular measurement error
+3 that can occur from a given sensor reading. However, other types
of error are also encountered, such as sensor location error.

3
,
L]
59
e
-
:

Sensor location error occurs when the actual location of the
sensor differs from the reported location of the sensor. Feor
example, suppose it is believed that the sensor is located at
position S! .n Figure 13 when, in fact, it it at peint A. The
effect 1is that the reported angle, and consequently line of
bearing, will be applied to the point S1 instead of A. The
result is that the estimated location i{s E' instead of E. Thus,
) the estimate of the emitter location has shifted from E to E'
because of the location error.

To analyze the effect of this error, the Clinic began by

e

22 assuming that the distribution of the senscr location error
~ follows the bivarfate normal probability law. Then, we
e\ constructed a circle with a radius of 3.5 sigme about the sensor.

Due to the characteristics of the ncrmal probability
distribution, we know that there is a 99% probability that the
sensor lies within the circle. However, it is not necessary to
use a two dimensional region such as a circie to have a 99%
probability. Note that any point on or withir. the circle has a
corresponding counterpart cn tne baseline.  Hence, if the sensor
is located anywhere on the leftmost dotted lire, it will return
the same reading for the line of bearing. Taus, we need to
include only the point A' in the analysis. Similarily, this {s
true for any sensor position. As a result, we are able to
restrict the analysis to the points that lie on the baseline.

P s St e el
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For a given point on the baseline, a line can be drawn to
the true emitter location. The angle that is formed with the
baseline 1is the reported angle. It is this angle that is then
applied to the point S1, which is where the sensor is believed to
be. The resulting estimate of the emitter is E' (See Figure 14).

It becomes of interest to examine the distribution of these
angles for a given sensor location. Thus, a portion of the
baseline (at least three sigma) was subdivided into fifteen
equally spaced intervals. A line segment was constructed from
the midpoint of the interval to the true emitter location. From
this, the angle that is formed by this line segment and the
baseline can be calculated. Each of these intervals has a
probability associated with {t, and this probability corresponds

f"" to the angle as well. This distribution of angles is plotted in
‘e

> A Figure 15 along with the normal distribution having the same mean

13
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and sigma values, As this diagram shows, the distribution of the
angles is very close to normal. Thus, we have demonstrated that
the sensor location error problem is equivalent to the angular
measurement error discussed earlier, and the distribution of the
angles about the mean is approximately normal.
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VI. Other Topics

During the course cf the year the Clinic also examined a
number of other topies, including a one-radar scenario,
systematic error due to equipment bias, and the potential use of
a digitizer or similar hardware by an intelligence analyst.

The one-radar scenario is based on the Clinic's two-sensor
model, and follows all of the same assumptions. The only
difference is the nature of the sensor. In the two-sensor case,
; each sensor returns a single line of bearing. Thus, two sensors
: are required to locate an emitter. In the one-radar scenario,

shown in Figure 16, we use a full radar set in place of a sensor.
Since the radar is not merely a passive receiver of radio
t signals, but also a transmitter, it is able to supplement the

line of bearing with a distance reading along that line of
' bearing.

B b AR o o Pl TN L B BN A A " -
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: In Figure 16, the emitter {s denoted by E (actually, it

; ) could be any object large enough to register on a radar), and the
R radar is denoted by S. The line SE is the true line cf bearing

) from the radar to the emitter, and the length of line segment SE
w is the true distance, r. The angle the true line of bearing
{ makes with the baseline is a. In this figure a reading has been

taken, returning the values (r',a'), and the resulting estimate
\ of the emitter's location is E'.

l If Stansfield's assumptions are applied to this model, only

one i{s modified -- that of parallel error displacement. Instead,
b error is measured in the natural units: degrees for the angle
’ ’ reading and meters for the distance reading. Further, we assume
f that the error in both of these readings is normally distributed
around zero error with some known standard deviation.

The analysis done on this model was based on a probability
grid completely analogous to that used in the two-sensor case.
Such a grid is shown in Figure 17. As before we calculated the
probability of a reading falling in each of the small regions,
and used this to approximate the density function. While the

grid shown has only 25 sub-regions, that actually used in the
computer analysis had over 3600.

While this is less complex problem mathematically than the
Clinic's two-sensor model, it is clear frcm the grid that many of
the same comments apply. For example, the distribution of radar
readings certainly does not follow the bivariate normal
distripbution; as in the two sensor case corresponding sub-
regions have differing areas, and so the density function s

A kBl D . B B B
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g skewed. While we did no further analysis, we expect that the
-ﬁ% b location of confidence regions constructed for this model would

0 depend on the level of confidence, Jjust as in the two-sensor
case. However, if the distance r is large enough compared to the
possible errors in the angle and distance readings, it is

Pt possible that the bivariate normal distribution may be a good
ﬁﬁ approximation to the true density. More research would be
;5 required to determine exactly when this might be the case.

b

-E:' Tne other type of error that the Clinic began to inveatigate

: is systematic error. This error ocours when the readings from
. the two sensors are perfectly correlated. This situation happens
: "~ when the same piece of equipment is used t0 take both readings,

g& due to {nherent equipment bias. It was not possible to treat
i this subject in the depth desired. Tnis topic will be pursued
B o further next year. . o

Lastly, the Clinic considered in limited detail a related
problem: that of terrain features., The area contained by a
confidence region may include & lake, gorge, or other natural

N area in which one would hardly expect to find an emitter,  Yet
W l the c¢onfidence region assumes that every point within it is &
(B possible location. One would deal with the problem by using
o conditional probability techniques. That is, there are ways of
" l caloulating the oonfidence that the emitter is in the region,
Qe while taken into account that fact that it cannot be in the
Q middle of a lake. The difficulty is that terrain features seldom
1% ,Lﬁ have mathematically pleasing shapes, and are thus hard to work
s - with, One solution to this problaem involves the use of a
I computer input device called a digitizer.
o '
p ‘ Wnile a lightpen could also be used, the Clinic had aococess
:% to the digitizer at the Rose Institute, a research institute at
. Claremont McKenna College. With this device a map of the terrain
) ' could be placed on the digitizer table, and a "ploture" of the
- probability distribution "overlayed" on it by the oomputer. An
$ , analyst would then be able to specify very irregular regions by
s drawing on the digitizer table with an electronic stylus. lakes
'ﬁ% i and other features could be easily blocked out.
A
N T™he Clinic wrote a small amount of rather limited software
I for this purpose, drawing on a private software library produced
o by the Rose Institute. This software was sufficient for our
Ky research, but not for the task outlined above. We believe that
b this is an idea worth pursuing in the future.
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VI1. Conclusion

In its analysis, the Clinic has relied on extremely aimple
models, with no more than two sensors, to examine and critique
the oclassical sensor/location problem first studied by R.G.
Stansfield. Yet even with such models, the effect of modilying
Stanafield's parallel error displacement assumption is striking.
When the methods used by Stansfield for constructing confidence
ellipses is used with the probability density derived by the
Clinic, the results are decidedly far too optimistic. As we
believe that our modification is the natural way to relax
Stansfield's assumption, our results ocould concelvably be quite
important for practical intelligence gathering systems.

1t is difficult, if not impossible, to predict how our
modification would effect situations with three or more sensors,
especially since different intelligence systems deal with
miltiple sensors in different ways. However, it is clear that it
would be dependent upon the configuration of the sensors; a
triangle of sensors centered on the emitter might oconcelvably
mitigate the error, whereas three sensors all arrange on one
baseline might even worsen the error. Further, while the Clinie
has studied several different sources of errors, little has been
gone to consider them together. It may be a decidedly ghastly

rew.

Finally, the Clinic chose to take only one observation from
the sensors in their analysis, as it was believed that individual
readings would not likely be independent. It is possible that
with more observations the differences between the two sorts of
eonfidence regions would grow less; it is also possible that
errors would multiply. At any rate, it is clear that a sizable
amount of research remains.
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i b TABLE 11

: Probability Strip Analysis

)

4

4

% The Tfollowing table contains the results of a probability

N strip analysis performed on the 80 degree / 110 degree casa. The

. standard deviation of the errors was assumed to one degree for

- both sensors, and the width between the sensors was 1000 meters,

b ' .

h ' The left ocolum shows the probubility ocontained in the

" strips below the true location of the emitter; the right colum

* shows the probability in the corresponding column above. As is
easily seen, the strips Jjust below the emitter contain more

2 probability than those just above. Thus, the density is skewed. \

g

: Lower Strips Upper Strips

A 0.2025 0.1976

Y 0.1723 0.1609

Y 0.0828 0.0768

() oo 0.0306 0.0435

AR 0.0062 ‘ 0.01€0

Width of strips = 50 meters

-
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TABLE 2:

Areas ané Contained Probabilities for Stansfield Ellipses

True Lines of Bearing (in degrees)

95% Confidence

Area:

Probability:
Center: X Coord.
Center: Y Coord.

75% Confidence

2.
e~
=3

£ _~
i 27

Area:
Probability:
Center: £ Coord.
Center: Y Coord.

50% Confidence

Kreat

Probability:
Center: X Coord.
Center: Y Coord.

MA=80; MB=110; MA=70; MB=170; MAI“S': MB=135;

20887
77.173%
326.35
1850.83

96€5
49.618
326.35
1850.83

303
326.35
1850.83

303
58.264%
60.31
165.69

140
34.142%
60.31
165.69

70
18.495%
60.31
165,69

1433
T7.629%
500.00
500.00

663
49.774%
500.00
500.00

331
29.635%
500.00
500.00

Note: All figures in this table were calculated under the
assumption that the two sensors were located 1000 meters apart,
and that the standard deviation of the error in the sensor
Distances are in meters and areas are

readings was one degree.
in square meters.
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% TABLE 3:

Areas and Contained Probabilities for the Clinic's Ellipses

True Lines of Bearing (in degrees)
MA=80; MB=110; MA=70; MB=170; MAxi5: MB=135;
95% Confidence [

Area: . 43257 089 2949

Probability: 95.002% 95,0118 95.379%

Center: X Coord. 324,36 60.90 . 499,88
‘ Center: Y Coord. 1875.51 167.27 ' 500.52
‘ 75% Confidence
i Trea: ' 19800 455 : 1364
! Probability: 75.015 75.027% 75.T11%

Center: X Coord. 325,44 60.58 499,94
E Center: Y Coord. 1862.16 166.42 . 500.25
! 50% Confidence

Area® : 9884 227 ' 692
1 Probability: 50.096 50.230% 50.867%
0 Center: X Coord, 325.90 60.44 499,98

Center: Y Coord. 1856.50 - 166,06 . 500,13

l Note: All f'igures in this table were calculated under the
assumption that the (wo sensors were located 1000 meters apart,

’ and that the standard deviation of the error in the sensor
readings was one degree. Distances are in meters and areas are
in square meters.




Figure 1

Stansfield's Two—Sensor Model
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Figure 2

Stansfield’'s Two—Sensor Model
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Figure 4

The Clinic's Two—Sensor Model
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il The Clinic's Probability Grid
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Figure 7

Stansfield's confidence Ellipses for
3;;5 the 80 degree / 110 degree case,
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Figure 8

The Clinic's Confidence Region for the
80 degree / 110 degree case,
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Figure 9

Stansfield's Confidence Ellipse for
the 70 degree / 170 degree case,
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g &# Figure 10

. The Clinic's Confidence Region for the
" 70 degree / 170 degree case,
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Figure 11

Stansfield's Confidence Ellipses for
the 45 degree / 135 degree case,
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Figure 12

) ? The Clinie's Confidence Regions for the
45 degree / 135 degree case,
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Pigure 13

LOCATION ERROR MODEL
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LOCATION ERROR MODEL

Figure 14




- rpry

- -
. oy
== P
—_ . ’ o . -y
-

{ .
[
y M
o———

i .&}*
e

',A

.

'b°'

ﬁ‘, tVp

AL ‘h.s‘ .

(4

LOCATION ERROR ACTUAL DISTRIS/TION

PROBAINLITY

“ -
) Figure 15

[ 15
(ST13
(S

L T
s - ]

!

153 134 ua 1M1 t.ﬂ 135 1308 LAl 1418 ER LAY 140 VR 1AR

ANOLL N MO
S ML W 12800 WD, IR » QTP
LOCATION ERROR NORMAL DISTRIBUTION
AL
Y

PROBABILIY/
o
(€13 i

3
(1) 3 -
aMop ol
(V13 ﬁ

i -
(" ]

ANGLE IN MADUNS
MR AL 1 1 3000 ANBR, BRI = 081 PP

a5

B R B R




Figure 16

The Clinic's One—Sensor Model
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Figure 17

One—Sensor Probability Grid

Baseline
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